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We consider the effect of rescattering of pairs of quasiparticles in the Cooper channel resulting in the strong
renormalization of second-order corrections to the spin susceptibility in a two-dimensional electron system. We
use the Fourier expansion of the scattering potential in the vicinity of the Fermi surface to find that each
harmonic becomes renormalized independently. Since some of those harmonics are negative, the first deriva-
tive of the spin susceptibility is bound to be negative at small momenta, in contrast to the lowest order
perturbation theory result, which predicts a positive slope. We present in detail an effective method to calculate
diagrammatically corrections to the spin susceptibility to infinite order.
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I. INTRODUCTION

The study of the thermodynamic as well as microscopic
properties of Fermi-liquid systems has a long history,1–4 but
the interest in nonanalytic corrections to the Fermi-liquid
behavior is more recent. The existence of well-defined qua-
siparticles at the Fermi surface is the basis for the phenom-
enological description due to Landau1 and justifies the fact
that a system of interacting fermions is similar in many ways
to the Fermi gas. The Landau theory of the Fermi liquid is a
fundamental paradigm which has been successful in describ-
ing properties of 3He, metals, and two-dimensional elec-
tronic systems. In particular, the leading temperature depen-
dence of the specific heat or the spin susceptibility �i.e., Cs
linear in T and �s approaching a constant� is found to be
valid experimentally and in microscopic calculations. How-
ever, deviations from the ideal Fermi gas behavior exist in
the subleading terms.

For example, while the low-temperature dependence of
Cs /T for a Fermi gas is a regular expansion in T2, a correc-
tion to Cs /T of the form T2 ln T was found in three
dimensions.5 These nonanalytic features are enhanced in two
dimensions and, in fact, a correction linear in T is found.6–8

These effects were observed in 3He, both in the three-9 and
two-dimensional case.10

The nonanalytic corrections manifest themselves not only
in the temperature dependence. For the special case of the
spin susceptibility, it is of particular interest to determine
also its dependence on the wave vector Q. The deviation ��s
from the T=Q=0 value parallels the temperature dependence
of the specific heat discussed above: from a second-order
calculation in the electron interaction, corrections propor-
tional to Q2 ln Q and Q were obtained in three and two di-
mensions, respectively.7,8 On the other hand, the dependence
on T was found to be ��s�T2 in three dimensions7,11 �with-
out any logarithmic factor� and ��s�T in two
dimensions.8,12–15 We cite here the final results in the two-
dimensional case �on which we focus in this paper�, valid to
second order in the interaction potential V�q�,

��s
�2��T,Q� = 2K�T,Q�V2�2kF� , �1�

where

K�T,0� =
m3

16�3

kBT

EF
�2�

and

K�0,Q� �
m3

48�4

vFQ

EF
. �3�

Here m is the effective mass, kF is the Fermi wave vector,
EF=kF

2 /2m, and we use �=1 throughout the paper. Our pur-
pose is to extend this perturbative result to higher order by
taking into account the Cooper channel renormalization of
the scattering amplitudes.

The extension to higher order of the second-order results
has mostly focused on the temperature dependence, both for
the specific heat16–20 and the spin susceptibility.16,21–23 Re-
cently the spin susceptibility has been measured in a silicon
inversion layer as a function of temperature.24 A strong de-
pendence on T is observed, seemingly incompatible with a
T2 Fermi-liquid correction, and the measurements also reveal
that the �positive� value of the spin susceptibility is decreas-
ing with temperature, in disagreement with the lowest order
result cited above. This discrepancy has stimulated further
theoretical investigations in the nonperturbative regime. Pos-
sible mechanisms that lead to a negative slope were proposed
in Refs. 21 and 22 if strong renormalization effects in the
Cooper channel become important. These can drastically
change the picture given by the lowest order perturbation
theory, allowing for a nonmonotonic behavior and, in par-
ticular, a negative slope at small temperatures.

The mechanism we consider here to modify the linear Q
dependence is very much related to Ref. 21. There it is found
that, at Q=0 and finite temperature, V2�2kF� in Eq. �1� is
substituted by ������2, where

���� � �
n

�nein� �4�

is the scattering amplitude in the Cooper channel with �
being the scattering angle ��=� corresponds to the back-
scattering process�. An additional temperature dependence
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arises from the renormalization of the Fourier amplitudes

�n�kBT� =
Vn

1 −
mVn

2�
ln

kBT

W

, �5�

where W is a large energy scale W�EF and Vn are the Fou-
rier amplitudes of the interaction potential for scattering in
the vicinity of the Fermi surface

V�2kF sin �/2� = �
n

Vnein�. �6�

A negative slope of ��s is possible for sufficiently small T if
one of the amplitudes Vn is negative.21,25,26 For

mVn

2� ln
kBTKL

W
=1, the denominator in Eq. �5� diverges what corresponds to
the Kohn-Luttinger �KL� instability.25 At T�TKL the deriva-
tive of the spin susceptibility is negative due to the singular-
ity in �n�kBT� and becomes positive far away from TKL.

At T=0 an analogous effect occurs for the momentum
dependence. Indeed, it is widely expected that the functional
form of the spin susceptibility in terms of kBT or vFQ is
similar. As in the case of a finite temperature, the lowest
order expression gains an additional nontrivial dependence
on Q due to the renormalization of the backscattering ampli-
tude V2�2kF�. We obtain

��s�Q� = 2K�0,Q�������2, �7�

where ���� is given by Eq. �4� and

�n�vFQ� =
Vn

1 −
mVn

2�
ln

vFQ

W

. �8�

Such result is obtained from renormalization of the interac-
tion in the Cooper channel, while other possible effects are
neglected. Moreover, at each perturbative order, only the
leading term in the limit of small Q is kept. Therefore, cor-
rections to Eq. �7� exist which, for example, would modify
the proportionality of ��s to ������2 �see Ref. 21�. However,
in the region vFQ�kBTKL, close to the divergence of
�n�vFQ� relative to the most negative Vn, Eq. �7� is expected
to give the most important contribution to the spin suscepti-
bility.

The result of Eqs. �7� and �8� could have been perhaps
easily anticipated and, in fact, it was suggested already in
Ref. 27. The question of the functional dependence of the
spin susceptibility on momentum is crucial in light of the
ongoing studies on the nuclear spin ferromagnetism27–29 as
the stability of the ferromagnetic phase is governed by the
electron spin susceptibility. In this context, Eqs. �7� and �8�
were motivated by a renormalization-group argument. We
provide here a complete derivation, based on the standard
diagrammatic approach.

The paper is organized as follows: in Sec. II we discuss
the origin of Cooper instability and derive expressions for a
general ladder diagram, which is an essential ingredient for
the higher order corrections to the spin susceptibility. In Sec.
III we give a short overview of the lowest order results to
understand the origin of the nonanalytic corrections. Based

on the results of Sec. II, we provide an alternative derivation
of one of the contributions, which can be easily generalized
to higher order. Section IV contains the main finding of this
paper: the Cooper renormalization of the nonanalytic correc-
tion to the spin susceptibility is obtained there. We find an
efficient approach to calculate higher order diagrams based
on the second-order result. In Sec. V the diagrammatic cal-
culation is discussed in relation to the renormalization-group
argument of Ref. 27. Section VI contains our concluding
remarks. More technical details have been moved to the Ap-
pendixes A–D.

II. PARTICLE-PARTICLE PROPAGATOR

In this section we consider a generic particle-particle
propagator, which includes n interaction lines, as depicted in
Fig. 1. The incoming and outgoing frequencies and momenta
are k� , p� and k�� , p�� , respectively, using the relativistic no-
tation k�= �	k ,k�. This particle-particle propagator repre-
sents an essential part of the diagrams considered in this
paper and corresponds to the following expression:


�n��p�,p�� ,k�� = �− 1�n−1� d3q1 . . . d3qn−1

�2��3n−3 V��q1��

��
i=1

n−1

G�k� − qi,��G�p� + qi,��V��qi+1 − qi�� ,

�9�

where qn�p�−p. The frequencies are along the
imaginary axis, i.e., G�k��=G�	k ,k�= �i	k−�k�−1, where �k
=k2 /2m−EF with k= �k�.

In particular, we are interested in the case when the sum
of incoming frequencies and momenta is small; i.e., P�

� p�+k�	0. Under this assumption we obtain the following
useful result for which we provide details of the derivation in
Appendix A:


�n��P�,�� = �
M1. . .Mn−1

�
M1
�P�� . . . 
Mn−1

�P��

�ṼM1. . .Mn−1

n ��P,�� , �10�

where the sum is restricted to Mi=0, 2, 4. . .. The angle
of P=p+k is from the direction of the incoming momentum
p, i.e., �P� � �P ,p�, while �� � �p� ,p�. In the above for-
mula,


0�P�� =
m

2�
ln

��P� + 
�P
2 + vF

2 P2

W
�11�

and �M even�

kµ

pµ

kµ − qµ

pµ + qµ

k′
µ

p′µ

kµ

pµ

k′
µ

p′µ

FIG. 1. The building block �on the left� of any ladder diagram
�on the right�. Of special interest is the limit of correlated momenta
p=−k, leading to the Cooper instability.
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M�0�P�� = −
m

2�

�− 1��M�/2

�M� �1 − sin �

cos �
��M�

, �12�

with W�EF a high energy cutoff and ��arctan
��P�
vFP . Notice

that 
M�P�� has no angular ��P ,�� dependence, which is
only determined by the following quantity:

ṼM1. . .Mn−1

n ��P,�� � �
m,m�

VmVm−M1
. . . Vm−M1−. . .Mn−1

� eim��P−im��M1+M2+. . .Mn−1,m� �13�

defined in terms of the amplitudes Vn. Equation �6� can be
used to approximate the interaction potential in Eq. �9� since
the relevant contribution originates from the region
of external �p	 p�	k	k�	kF� and internal momenta
��p+qi�	�k−qi�	kF� close to the Fermi surface. Further-
more, the direction of P can be equivalently measured from
k without affecting the result since �P= � �P ,k�+� and
eim��=1 �m� is even�.

Notice also that the leading contribution to Eq. �10�, in the
limit of small �P and P, is determined by the standard loga-
rithmic singularity of 
0�P��. However, it will become ap-
parent that this leading contribution is not sufficient to obtain
the correct result for the desired �linear-in-Q� corrections to
the response function. The remaining terms, 
M�P��, are
important because of their nonanalytic form due to the de-
pendence on the ratio

��P�
vFP .

III. SECOND-ORDER CALCULATION

The lowest order nonanalytic correction to the spin sus-
ceptibility has been calculated in Ref. 8 as a sum of four
distinct contributions from the diagrams in Fig. 2,

��1
�2��Q� = K�0,Q�V2�2kF� + V2�0�� , �14�

��3
�2��Q� = K�0,Q�V2�2kF� − V2�0�� , �15�

��4
�2��Q� = K�0,Q�V�0�V�2kF� , �16�

and ��2
�2�=−��4

�2� such that the final result reads as

��s
�2��Q� = 2K�0,Q�V2�2kF� . �17�

We refer to Ref. 8 for a thorough discussion of these
lowest order results, but we find it useful to reproduce here
the result for ��1

�2�. In fact, Eq. �14� has been obtained in Ref.
8 as a sum of two nonanalytic contributions from the
particle-hole bubble at small �q=0� and large �q=2kF� mo-
mentum transfer. These two contributions, proportional to
V2�0� and V2�2kF�, respectively, can be directly seen in Eq.
�14�. However, it is more natural for our purposes to obtain
the same result in the particle-particle channel by making use
of the propagator discussed in Sec. II. This approach is more
cumbersome but produces these two contributions at the
same time. Furthermore, once the origin of the lowest order
nonanalytic correction is understood in the particle-particle
channel, higher order results are most easily obtained.

We start with the analytic expression of ��1
�2��Q� �see Fig.

3� in terms of 
�2�, the n=2 case of Eq. �10�;

��1
�2��Q� = − 8� d3k

�2��3� d3P

�2��3G2�k��

�G�k� + Q��G�P� − k��
�2��P�,0� . �18�

It is convenient to define the angle of k as �k� � �k ,Q�, and
�P� � �P ,k�. We first perform the integration in d3k, as ex-
plained in Appendix B, to obtain

��1
�2� = −

m

�4vF
2Q2�

0

�

PdP�
0

�

d�P�
0

2�


�2��P�,0�

��1 −

��P + ivFP cos �P�2 + �vFQ�2

�P + ivFP cos �P
�d�P.

�19�

Following the method of Ref. 8, we rescale the integration
variables: �P=RvFQ sin �, P=RQ cos �, and d�PdP
=RvFQ2dRd�. This gives

δχ
(2)
1 (Q) δχ

(2)
2 (Q)

δχ
(2)
3 (Q) δχ

(2)
4 (Q)

FIG. 2. The nonvanishing second-order diagrams contributing to
the nonanalytic behavior of the electron spin susceptibility.

kµ kµ

kµ + Qµ

Pµ − kµ

Pµ + qµ

−qµ

FIG. 3. Labeling of the ��1
�2� diagram, as in Eq. �18�.

MOMENTUM DEPENDENCE OF THE SPIN… PHYSICAL REVIEW B 79, 115445 �2009�

115445-3



��1
�2� = −

mQ

�4vF
�

0

�

R2dR�
0

�/2

d��
0

2�


�2��R,�,�P,0�

�cos ��1 −

R2�sin � + i cos � cos �P�2 + 1

R�sin � + i cos � cos �P�
�d�P,

�20�

where, from Eqs. �10� and �13�,


�2��R,�,�P,�� = �
M

�ṼM
2 ��P,��
M�R,��

= �
M

�
M�R,���
m

VmVm−MeiM�P−im�,

�21�

with the primed sum restricted to even values of M.
Now we can see clearly that the linear dependence on Q

in Eq. �20� can only be modified by the presence of 
�2� in
the integrand because of


0�R,�� =
m

2�
ln

vFQ

W
+

m

2�
ln R�1 + sin �� . �22�

The first logarithmic term is diverging at small Q but does
not contribute to the final result since it does not depend on
�P and �. In fact, if we keep only the m

2� ln
vFQ

W contribution,
after the change of variable r=R�sin �+ i cos � cos �P�
in Eq. �20�, we obtain the angular integral
�0

2�d�P�0
�/2cos ��sin �+ i cos � cos �P�−3d�=0 cf. Eq. �C6�

for M =0�. Details of the calculation are provided in Appen-
dix C.

Therefore, only the second term of Eq. �22� is relevant.
The integral in Eq. �20� becomes independent of Q and gives
only a numerical prefactor. The final result is given by Eq.
�14�, in agreement with Ref. 8. In a similar way, the remain-
ing diagrams of Fig. 2 can be calculated.

IV. HIGHER ORDER DIAGRAMS

In this section we aim to find the renormalization of the
four diagrams depicted in Fig. 2 due to higher order contri-
butions in the particle-particle channel. It is well known that
the scattering of two electrons with opposite momenta, in the
presence of the Fermi sea, leads to the emergence of a loga-
rithmic singularity.30,31 Furthermore, in two dimensions there
are just two processes that contribute to ��i

�2��Q�, namely,
forward- �small momentum transfer, q=0� and back-
scattering �large momentum transfer, q=2kF�. This results in
the renormalization of the scattering amplitudes appearing in
the second-order results �see Sec. I�.

A direct calculation of the particle-particle propagators,
depicted in Fig. 1, shows that for n+1 interaction lines, the
divergence always appears as the nth power of a logarithm.
At each order of the perturbative expansion, we only con-
sider the single diagram which contributes to the nonanalytic
correction with the leading logarithmic singularity. This re-
quirement restricts the freedom of adding interaction lines in
unfettered manner to the existing second-order diagrams: in
order to produce the most divergent logarithmic term, all

interaction lines have to build up at most one ladder for ��1,
��2, and ��4, or two ladders for ��3.

The subset of diagrams generated in this way is not suf-
ficient to obtain the general momentum dependence of the
spin susceptibility. However, if one of the harmonics Vn is
negative, these diagrams are the only relevant ones in the
vicinity of the Kohn-Luttinger instability, vFQ�kBTKL. Fur-
thermore, at each order n in the interaction, it suffices to keep
the leading contribution in Q of the individual diagrams.
This turns out to be of order Q lnn−2 Q because the term
proportional to lnn−1 Q is suppressed by an additional factor
Q2. Other perturbative terms, e.g., in the particle-hole
channel,22 can be safely neglected as they result in logarith-
mic factors of lower order.

In the following we discuss explicitly how to insert a
ladder diagram into the pre-existing second-order diagrams
and show the line of the calculation that has to be carried out.

A. Diagrams 1, 2, and 4

These three diagrams can all be expressed to lowest order
in terms of a single particle-particle propagator 
�2�, which
at higher order is substituted by 
�n�. For the first term we
have

��1
�n��Q� = − 8� d3k

�2��3� d3P

�2��3G2�k��

�G�k� + Q��G�P� − k��
�n��P�,0� , �23�

where the n=2 case was calculated in Sec. III. The corre-
sponding diagrams are, in this case, easily identified and
shown in Fig. 4.

It is slightly more complicated to renormalize ��2
�2� and

��4
�2�. It requires one to realize that the diagrams depicted in

Fig. 5 are topologically equivalent; i.e., the maximally
crossed diagram on the left is equivalent to the untwisted
ladder diagram on the right. A similar analysis shows how to
lodge the ladder diagram into ��4

�2�, as illustrated in Fig. 6.
The corresponding analytic expressions are

+ + + . . .

FIG. 4. The series of diagrams contributing to ��1�Q�.

≡

FIG. 5. �Color online� An example of diagram contributing to
��2�Q�. The maximally crossed diagram �left� is topologically
equivalent to its untwisted counterpart �right� in which the particle-
particle ladder appears explicitly.
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��2
�n��Q� = 4� d3k

�2��3� d3P

�2��3G2�k��G�k� + Q��

�G�P� − k��
�n��P�,�� , �24�

��4
�n��Q� = 2� d3k

�2��3� d3P

�2��3G�k��G�k� + Q��

�G�P� − k��G�P� − k� − Q��
�n��P�,�� .

�25�

We show now that the final results can be simply obtained
to leading order in Q based on the second-order calculation.
In fact, we can perform the integration in d3k and the rescal-
ing of variables as before. For ��1 we have

��1
�n� = −

mQ

�4vF
�

0

�

R2dR�
0

�

d�P�
0

�/2


�n��R,�,�P,0�

��1 −

R2�sin � + i cos � cos �P�2 + 1

R�sin � + i cos � cos �P�
�cos �d� .

�26�

In the above formula, the Q dependence in the integrand is
only due to 
�n�. It is clear that a similar situation occurs for
the second and fourth diagrams.

The Q dependence of the rescaled Eq. �10� is determined
�as in the second order� by the factors 
0�R ,��. The first
term appearing in 
0�R ,��, see Eq. �22�, is large in the small
Q limit we are interested in. Therefore, we can expand 
�n�

in powers of m
2� ln

vFQ

W and retain at each perturbative order n
only the most divergent nonvanishing contribution. The de-
tailed procedure is explained in Appendix D. It is found that
the largest contribution from 
�n� is of order � m

2� ln
vFQ

W �n−1.
However, as in the case of the second-order diagram dis-
cussed in Sec. III, this leading term has an analytic depen-
dence on P� �in fact, it is a constant�, and gives a vanishing
contribution to the linear-in-Q correction to the spin suscep-
tibility. Therefore, the � m

2� ln
vFQ

W �n−2 contribution is relevant
here.

A particularly useful expression is obtained upon summa-
tion of 
�n� to infinite order. In fact, for each diagram, the
sum of the relative series involves the particle-particle propa-
gator only. Therefore, ��1, ��2, and ��4 are given by Eqs.
�23�–�25� if 
�n� is substituted by


����P�,�� = �
n=2

�


�n��P�,�� . �27�

The relevant contribution of 
����P� ,��, in the rescaled vari-
ables, is derived in Appendix D. The final result is


����R,�,�P,�� = �
n=2

�


�n��R,�,�P,��

= �
M

�
M�R,���
m

�m�m−MeiM�P−im� + . . . ,

�28�

which should be compared directly to Eq. �21�. The only
difference is the replacement of Vn with the renormalized
amplitudes �n, which depend on Q as in Eq. �8�.

Hence, it is clear that the final results follow immediately
from Eqs. �14�–�16�;

��1�Q� = K�0,Q��2�0� + �2���� , �29�

��4�Q� = K�0,Q���0����� , �30�

and ��2�Q�=−��4�Q�. We have used notation �4� while
K�0,Q� is defined in Eq. �3�. This explicitly proves what was
anticipated in Sec. I �and in Ref. 27�, i.e., that the renormal-
ization affects only the scattering amplitude. The bare inter-
action potential is substituted by the dressed one, which in-
corporates the effect of other electrons on the scattering pair.

B. Diagram 3

The last diagram ��3
�2� differs from those already dis-

cussed in the sense that it allows for the separate renormal-
ization of either the upper or lower interaction line. This
results in the appearance of two equivalent third-order dia-
grams and three fourth-order diagrams �of which two are
equal�, and so forth. These lowest order diagrams are shown
in Fig. 7. Accordingly, we define the quantities ��3

�i,j�, where
ladders of order i and j are inserted in place of the original
interaction lines. In particular, ��3

�n�=�i,j��3
�i,j��n,i+j and

��3�Q� = �
i,j=1

�

��3
�i,j��Q� . �31�

≡

FIG. 6. A maximally crossed diagram �left� and its untwisted
equivalent �right� contributing to ��4�Q�.

+ 2×

+ 2× + . . .

FIG. 7. The series of diagrams contributing to ��3�Q�. At the
top, the second- and third-order order diagrams. Two equivalent
third-order diagrams arise from the addition of a parallel interaction
line to either the upper or the lower part of the second-order dia-
gram. At the bottom, three fourth-order diagrams.
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The second difference stems from the fact that a finite
nonanalytic correction is obtained from the leading terms in
the particle-particle ladders of order � m

2� ln
vFQ

W �i−1 and
� m

2� ln
vFQ

W � j−1, respectively. In fact, extracting this leading
term from Eq. �10� we obtain


�j��P�,�� = �
n

Vn
j e−in�� m

2�
ln

vFQ

W
� j−1

+ . . . , �32�

and by performing the sum over j we get

�
j=1

�


�j��P�,�� = ���� + . . . . �33�

A similar argument can be repeated for the ith order interac-
tion ladder. Therefore, the bare potential is replaced by renor-
malized expression �4� and the final result,

��3�Q� = K�0,Q��2��� − �2�0�� , �34�

is immediately obtained from Eq. �15�.

C. Renormalized nonanalytic correction

Combining the results of Secs. IV A and IV B, it is clear
that the final result has the same form of Eq. �17� if V�2kF� is
substituted by ����. The explicit expression reads as

��s�Q� =
m3

24�4

Q

kF��n

Vn�− 1�n

1 −
mVn

2�
ln

vFQ

W
�

2

. �35�

V. RELATION TO THE RG TREATMENT

As discussed, our calculation was partially motivated by
the renormalization group �RG� argument of Ref. 27. In this
section, we further substantiate this argument. Starting from
Eqs. �21� and �22�, one can calculate the second-order cor-
rection to the bare vertex 
�1�=�nVnein� given by


�2��P�,�� =
m

2�
ln

vFQ

W
�

n

Vn
2ein� + . . . , �36�

where we explicitly extracted the dependence on the upper
cutoff W. From Eq. �36�, we can immediately derive the
following RG equations for the scale-dependent couplings
�n��=vFQ�:

d�n

d ln
�

W

=
m

2�
�n

2, �37�

as in Ref. 27. This leads to the standard Cooper channel
renormalization. A direct derivation of these scaling equa-
tions can be found in Ref. 32. At this lowest order, we obtain
an infinite number of independent flow equations, one for
each angular momentum n. The integration of these scaling
equations directly leads to Eq. �8�. These flow equations tell
us that the couplings �n are marginally relevant in the infra-
red limit when the bare �n are negative and marginally irrel-

evant otherwise. Notice that at zero temperature, the running
flow parameter � is replaced by the momentum vFQ in the
Cooper channel. The idea of the RG is to replace in the
perturbative calculations of a momentum-dependent quantity
the bare couplings �n by their renormalized values. By doing
so, we directly resum an infinite class of �ladder� diagrams.

Let us apply this reasoning now to the susceptibility dia-
grams and note that the first nonzero contribution to the
linear-in-Q behavior of �s�Q� appears in the second order in
�n. For the particular example of ��3, the renormalization
procedure has to be carried out independently for the two
interaction lines, as illustrated by the series of diagrams in
Fig. 7. For a given order of the interaction ladder in the
bottom �top� part of the diagram, one can perform the Coo-
per channel resummation of the top �bottom� interaction lad-
ders to infinite order, as described in Sec. IV B or by using
the RG equations. The fact that renormalized amplitudes �n
appear in the final results for the remaining diagrams ��1,2,4
is also clear from the RG argument, after insertion of
particle-particle ladders as in Figs. 4–6.

Finally, we note that the same series of diagrams that
renormalizes the nonanalytic second-order contributions
��1,2,4

�2� also contributes to the renormalization of the first-
order diagrams displayed in Fig. 8 �notice that the first one is
actually vanishing because of charge neutrality�. As it is clear
from the explicit calculation in the Secs. I–IV, the highest
logarithmic powers, i.e., ��ln vFQ /W�n−1 at order n, renor-
malize Vm to �m in the final expressions for Fig. 8. These
first-order diagrams have an analytic dependence, at most
Q2. Therefore, in agreement with the discussion in Sec.
IV A, the largest powers of the logarithms are not important
for the linear dependence in Q and, in fact, they were already
neglected to second order.8

VI. CONCLUSIONS

In this paper we discussed the renormalization effects in
the Cooper channel on the momentum-dependent spin sus-
ceptibility. The main result of the paper is given by Eq. �35�
and shows that each harmonics gets renormalized indepen-
dently. The derivation of the higher order corrections to the
spin susceptibility was based on the second-order result,
which we revisited through an independent direct calculation
in the particle-particle channel. Taking the angular depen-
dence of the scattering potential explicitly into account, we
verified that the main contribution indeed enters through
forward- and back-scattering processes. At higher order, we

FIG. 8. First-order diagrams contributing to the spin susceptibil-
ity. These are renormalized by the leading logarithmic terms of the
higher order diagrams �see Figs. 4–6�. However, they do not pro-
duce a nonanalytic correction and can be neglected in the limit of
small Q.
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found a simple and efficient way of resumming all the dia-
grams which contribute to the Cooper renormalization. We
identified the leading nonvanishing logarithm in each ladder
and used this result in the second-order correction. This
method saves a lot of effort and, in fact, makes the calcula-
tion possible.

It was argued elsewhere that these renormalization effects
might underpin the nonmonotonic behavior of the electron
spin susceptibility if the higher negative harmonics override
the initially leading positive Fourier components. This would
result in the negative slope of the spin susceptibility at small
momenta or temperatures.21,27 Other effects neglected here,
as subleading logarithmic terms and nonperturbative contri-
butions beyond the Cooper channel renormalization,22 be-
come relevant far away from the Kohn-Luttinger instability
condition, but a systematic treatment in this regime is outside
the scope of this work. Our results could be also extended to
include material-related issues such as disorder and spin-
orbit coupling, which are possibly relevant in actual samples.

We also notice that final expression �35� parallels the tem-
perature dependence discussed in Ref. 21, suggesting that the
temperature and momentum dependence are qualitatively
similar in two dimensions. This was already observed from
the second-order calculation in which a linear dependence
both in Q and T is obtained. In our work we find that this
correspondence continues to hold in the nonperturbative re-
gime if the Cooper channel contributions are included. This
conclusion is nontrivial and, in fact, does not hold for the
three-dimensional case.

The last remark, together with the experimental observa-
tion of Ref. 24, supports the recent prediction that the ferro-
magnetic ordering of nuclear spins embedded in the two-
dimensional electron gas is possible.27,28 The ferromagnetic
phase would be stabilized by the long-range Ruderman-
Kittel-Kasuya-Yosida �RKKY� interaction, as determined by
the nonanalytic corrections discussed here.
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APPENDIX A: DERIVATION OF THE LADDER
DIAGRAMS

To calculate the ladder diagram given by Eq. �9� we begin
from the simultaneous change of all qi variables,
qi,�→−qi,�− p�, and expand the scattering potential into its
Fourier components given by Eq. �6�. Thus,


�n��p�,p�� ,k�� = �
m1. . .mn

�− 1�n−1+m1−mnVm1
. . . Vmn

�e−im1�p+imn�p��
i=1

n−1� d3qi

�2��3G�− qi,��

�G�qi,� + P��ei�mi−mi+1��qi, �A1�

where P��k�+ p�. We first evaluate the factors

M�P���−� d3q

�2��3 G�−q��G�q�+ P��eiM�q appearing in the
above formula. To this end, we integrate over the frequency
�q and linearize the spectrum around the Fermi surface,
�q+P	�q+vFP cos �q. This requires that �q, and all the
angles in Eq. �A1�, are defined from the direction of P. We
also use �=�q as integration variable, which gives


M�P�� = −
m

�2��2�
0

2�

d�qeiM�q� d�

�
��� + vFP cos �q� − ��− ��

2� + vFP cos �q − i�P
. �A2�

The unit step functions, ���+vFP cos �q� and ��−��, deter-
mine the integration range in �, which is −vFP cos �q to W
and −W to 0, respectively, with W being the high energy
cutoff. The energy integration yields


M�P�� = −
m

�2��2�
0

2�

d�qeiM�1

2
�− i� sgn �P

+ ln
2W

− vFP cos �q − i�P
+ ln

2W

vFP cos �q − i�P
� ,

�A3�

with the sign term coming from the lower limit of the second
integration, ln�−2W− i�P�=ln 2W− i� sgn �P.

If we change variables in the integral over the first loga-
rithm, �q→�q+�, we make it identical to the second one,
except for the multiplicative term �−1�M originating from
eiM��q+��. Therefore, we find that


M�P�� =
m

�2��2�
0

2�

d�qeiM�q� i�

2
sgn �P

+ ln
− i�P

W
+ ln�1 + i

vFP

�P
cos �q�� , �A4�

where M is even and the factor of 2 in front of W has been
absorbed into the cutoff. Writing the second logarithm as a
series, ln�1+x�=−�n=1

� �−1�n xn

n , we can easily integrate term
by term.

The M =0 contribution is


0�P�� =
m

�2��2�
0

2�

d�q�ln
��P�
W

− �
n=1

�
1

n
�− ivFP

�P
cos �q�n�

=
m

2��ln
��P�
W

− �
n�2

�
1

n
�n

n
2
��− ivFP

2�P
�n� , �A5�

where n is even in the primed sum. The summation of the
series gives Eq. �11� shown in the main text.

For M �0 �M even� we get
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M�P�� = −
m

�2��2�
0

2�

d�qeiM�q�
n

1

n
�− ivFP

�P
cos �q�n

= −
m

2�
�

n��M�

�
1

n� n

n − �M�
2

��− ivFP

2�P
�n

. �A6�

Upon summation over even values of n, Eq. �12� in the main
text is obtained. We now consider Eq. �A1�, and to simplify
the notation we introduce new summation indexes Mn−i
�mi−mi+1 �for i=1,2 , . . .n−1� and m�−mn. We also intro-
duce m�=m1−mn=�iMi, which is even. We express the
angles from the direction of p, i.e., �p→−�P and �p�→�
−�P. Finally, we obtain


�n��P�,�� = �
m�,M1. . .Mn−1

� V−mVM1−m . . . VM1+. . .Mn−1−m

�eim��P−im�
M1
�P�� . . . 
Mn−1

�P�� , �A7�

which can be written as in Eq. �10� using definition �13�. The

special case of 
�2� is given by Eq. �21� and can be directly
used for the derivation of RG equations in Sec. V.

APPENDIX B: GREEN’S FUNCTIONS INTEGRATION
FOR ��1

(n)

We consider here the integration of the Green’s functions
appearing explicitly in Eqs. �18� and �23�;

A � −� d2k

�2��2 lim
�k�→�k

� d	

2�

�
1

�	 + i�k��	 + i�k���	 + i�k+Q��	 − �P − i�k−P�
.

�B1�

The integration over 	 can be performed with the method of
residues �we choose the lower half-plane contour�;

A = im� d�kd�k

�2��2 lim
�k�→�k

� ���k�
��k� − �k���k+Q − �k���P + i�k + i�k−P�

+
���k��

��k − �k����k+Q − �k����P + i�k� + i�k−P�

+
���k+Q�

��k − �k+Q���k� − �k+Q���P + i�k+Q + i�k−P�
+

��− �k−P�
��P + i�k + i�k−P���P + i�k� + i�k−P���P + i�k+Q + i�k−P�� . �B2�

Since the sum of all residues of the integrand in Eq. �B1�
in the entire complex plane is zero, we can subtract the same
quantity ���k� from each numerator in Eq. �B2� without af-
fecting the result. This cancels the first term and, using
lim�k�→�k

���k��−���k�
�k�−�k

=���k�, we obtain

A = A1 + A2 + A3

= im� d�kd�k

�2��2 � i���k�
��k − �k+Q���P + i�k + i�k−P�

+
���k+Q� − ���k�

��k − �k+Q�2��P + i�k+Q + i�k−P�

+
��− �k−P� − ���k�

��P + i�k + i�k−P�2��P + i�k+Q + i�k−P�� . �B3�

We can now perform the integration in d�k. To this end
we linearize the energy spectrum near the Fermi surface,
�k+Q	�k+vFQ cos �k and �k−P	�k−vFP cos �P, which is a
good approximation since Q , P�kF. We also define
���P− ivFP cos �P �and the complex conjugate

�̄��P+ ivFP cos �P�. The first two integrals are vanishing,

A1 =
m

�2��2�
0

2�

d�k
1

�vFQ cos �k
= 0,

and

A2 =
m

8�2�
0

2� d�k

�vFQ cos �k�2 ln� � + ivFQ cos �k

� − ivFQ cos �k
� = 0,

since the integrands are odd with respect to cos �k.
For the remaining term we make use of the indefinite

integral,

� d�

�2i� + z1�2�2i� + z2�
=

z1 − z2 + �z1 + 2i��ln� z2 + 2i�

z1 + 2i�
�

2i�z1 − z2�2�2i� + z1�
,

which tends to zero for �→ �, and hence only the integra-
tion limits at 0 and vFP cos �P contribute;

A =
m

8�2�
0

2�� 1

�vFQ cos �k�2�ln� �̄

�̄ + ivFQ cos �k

�
+ ln� �

� + ivFQ cos �k
�� +

2i�P

���2vFQ cos �k
�d�k.

�B4�

The last term vanishes and the final integration in d�k can be
done using
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�
0

2� ln� z
z+ia cos ��

a2 cos2 �
d� =

2�

a2 �1 − sgn�Re z�

z2 + a2

z
� ,

�B5�

which yields

A =
m

4��vFQ�2�2 −

��P + ivFP cos �P�2 + �vFQ�2

�P + ivFP cos �P
sgn �P

−

��P − ivFP cos �P�2 + �vFQ�2

�P − ivFP cos �P
sgn �P� . �B6�

Notice that A is even in �P. Furthermore, the last two terms
give the same contribution upon integration �0

2�d�P, and
therefore Eq. �19� is obtained.

APPENDIX C: CALCULATION OF ��1
(2)

In this appendix we consider the explicit evaluation of Eq.
�20�. It receives contributions from all possible values of M
appearing in 
�2� see Eq. �21��. We consider first M =0
for which Eq. �22� is useful. With the change of variables
r=R�sin �+ i cos � cos �P� we obtain

��1,0
�2� = −

m2Q

2�5vF
Ṽ0

2�
0

�/2

d� cos ��
0

2�

d�P�
0

rmax��,�P�

�drr2�1 −

r2 + 1

r
�

�

ln� 1 + sin �

sin � + i cos � cos �P
� + ln�vFQr

W
�

�sin � + i cos � cos �P�3 , �C1�

where rmax= W
vFQ �sin �+ i cos � cos �P�. Note, that it is nec-

essary to introduce the upper cutoff in the integral over r,
which is formally divergent. However, this upper limit turns
out to be irrelevant for the nonanalytic correction.

We start from the first contribution in the above equation,
where the r integration gives

Q�
0

rmax

drr2�1 −

r2 + 1

r
�

=
Q

3
rmax

3 − �1 + rmax
2 �3/2 + 1�

	
W

vF
�sin � + i cos � cos �P� +

Q

3
. �C2�

The term proportional to W, as in Ref. 8, is the dominant
contribution to the spin susceptibility. However, it does not
depend on Q and therefore is uninteresting for us. The term
proportional to Q, from the lower integration limit, is the
desired nonanalytic correction to the spin susceptibility and
does not depend on � and �P. Therefore, the angular integra-
tion can be performed using33

�
0

�/2

d� cos ��
0

2�

d�P

ln� 1 + sin �

sin � + i cos � cos �P
�

�sin � + i cos � cos �P�3 = −
�

2
.

�C3�

The same analysis can be applied to the second term of Eq.
�C1�, which contains ln�vFQr /W�. The integration in r gives
a constant from the lower limit and the remaining angular
integrations yield zero, as discussed in the main text.

Hence, the final result is

��1,0
�2��Q� =

m2

12�4vF
Q�

n

Vn
2. �C4�

We now aim to calculate terms with M �0. By making
use of Eq. �12� for 
M�R ,�� and substituting again
r�R�sin �+ i cos � cos �P� we obtain

��1,M
�2� =

m2Q

2�M��5vF
�

n

VM−nVn�
0

�/2

d��
0

2�

d�P�
0

rmax

�drr2�1 −

r2 + 1

r
��1 − sin �

i cos �
��M�

�
cos �e−iM�P

�sin � + i cos � cos �P�3 . �C5�

The integral over r can be performed as before. The integra-
tion over �P yields

�
0

2�

d�P
e−iM�P

�sin � + i cos � cos �P�3

= ��M2 + 3�M�sin � + 3 sin2 � − 1��1 − sin �

i cos �
��M�

,

�C6�

which can be obtained by standard contour integration in the
complex plane �z=e−i�P�. Finally,

��1,M
�2� =

m2Q

6�M��4vF
�

n

VM−nVn�
0

�/2

d� cos ��1 − sin �

cos �
�2�M�

��M2 + 3�M�sin � + 3 sin2 � − 1�

=
m2Q

12�4vF
�

n

VM−nVn �C7�

since the last integration gives a factor of �M� /2. Thus, the
total second-order correction is

��1
�2��Q� =

m2

24�4

Q

vF
�
M

��
n

2VM−nVn. �C8�

Rewriting the double sum as �m,nVmVn+�m,n�−1�m+nVmVn,
we recover the two contributions as in Eq. �14�.

APPENDIX D: SMALL Q limit of �(n)

We expand 
�n� see Eq. �10�� in powers of 
0�R ,�� as
follows:
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�n��R,�,�P,�� 	 Ṽ00. . .0
n 
0

n−1

+ �
M�0

��ṼM0. . .0
n + . . . Ṽ00. . .M

n �
M
0
n−2

+ . . . . �D1�

The expression of 
0�R ,�� is given by Eq. �22�. Therefore,
the leading contribution in the above equation at small Q is
from the first term since 
0

n−1	� m
2� ln

vFQ

W �n−1. However, the
leading order does not contribute to the nonanalytic correc-
tion. Neglecting such constant terms, we can write the rel-
evant subleading contribution in the following way:


0�R,���n−1

= �n − 1�� m

2�
ln

vFQ

W
�n−2 m

2�
ln R�1 + sin �� + . . .

= �n − 1�� m

2�
ln

vFQ

W
�n−2


0�R,�� + . . . . �D2�

Furthermore, by using 
0
n−2	� m

2� ln
vFQ

W �n−2, we can simplify
Eq. �D1� to the following form:


�n��R,�,�P,�� = � m

2�
ln

vFQ

W
�n−2

�
M

��ṼM0. . .0
n + Ṽ0M. . .0

n

+ . . . Ṽ00. . .M
n �
M + . . . . �D3�

By making use of Eq. �13� we have

ṼM0. . .0
n + Ṽ0M. . .0

n + . . . Ṽ00. . .M
n = �

k
�
j=1

n−1

Vk
n−jVk−M

j eiM�P−ik�,

�D4�

and therefore Eq. �D3� is written explicitly as


�n��R,�,�P,�� = �
M

�
M�R,���
k

VkVk−MeiM�P−ik� �
j,j�=0

�

�� j+j�,n−2�mVk

2�
ln

vFQ

W
� j�mVk−M

2�
ln

vFQ

W
� j�

+ . . . . �D5�

We can now sum previous expression �D5� over the index
n�2, which removes the constraint j+ j�=n−2. Hence, the
last double summation factorizes in the product of two geo-
metric series that can be evaluated explicitly, and we obtain
Eq. �28�.
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